Hate Speech Detection with Comment Embeddings
نویسندگان
چکیده
We address the problem of hate speech detection in online user comments. Hate speech, defined as an “abusive speech targeting specific group characteristics, such as ethnicity, religion, or gender”, is an important problem plaguing websites that allow users to leave feedback, having a negative impact on their online business and overall user experience. We propose to learn distributed low-dimensional representations of comments using recently proposed neural language models, that can then be fed as inputs to a classification algorithm. Our approach addresses issues of high-dimensionality and sparsity that impact the current state-of-the-art, resulting in highly efficient and effective hate speech detectors.
منابع مشابه
Deep Learning for Hate Speech Detection in Tweets
Hate speech detection on Twitter is critical for applications like controversial event extraction, building AI chatterbots, content recommendation, and sentiment analysis. We define this task as being able to classify a tweet as racist, sexist or neither. The complexity of the natural language constructs makes this task very challenging. We perform extensive experiments with multiple deep learn...
متن کاملHate Speech Detection: A Solved Problem? The Challenging Case of Long Tail on Twitter
In recent years, the increasing propagation of hate speech on social media and the urgent need for effective countermeasures have drawn significant investment from governments, companies, and empirical research. Despite a large number of emerging, scientific studies to address the problem, the performance of existing automated methods at identifying specific types of hate speech as opposed to i...
متن کاملUsing Convolutional Neural Networks to Classify Hate-Speech
The paper introduces a deep learningbased Twitter hate-speech text classification system. The classifier assigns each tweet to one of four predefined categories: racism, sexism, both (racism and sexism) and non-hate-speech. Four Convolutional Neural Network models were trained on resp. character 4-grams, word vectors based on semantic information built using word2vec, randomly generated word ve...
متن کاملSurfacing contextual hate speech words within social media
Social media platforms have recently seen an increase in the occurrence of hate speech discourse which has led to calls for improved detection methods. Most of these rely on annotated data, keywords, and a classification technique. While this approach provides good coverage, it can fall short when dealing with new terms produced by online extremist communities which act as original sources of w...
متن کاملAutomated Hate Speech Detection and the Problem of Offensive Language
A key challenge for automatic hate-speech detection on social media is the separation of hate speech from other instances of offensive language. Lexical detection methods tend to have low precision because they classify all messages containing particular terms as hate speech and previous work using supervised learning has failed to distinguish between the two categories. We used a crowd-sourced...
متن کامل